Qu'est-ce qu'une dérivée ?

Définition de la dérivée :

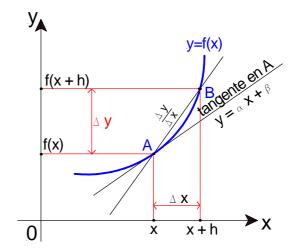
Soit une courbe y = f(x)

En un point quelconque « A », la courbe admet une tangente d'équation : $y = \alpha x + \beta$

La dérivée de f(x) est l'expression f'(x) qui donne le coefficient directeur « α » de la tangente en n'importe quel point de f(x).

Donc sur la figure ci-contre :

Soit le point : $A(x_A, y_A)$ on aura : $f'(x_A) = \alpha$ qui est le coefficient directeur de la tangente.



Pour calculer la pente (α) de la tangente en « A » on définit la valeur « h » comme étant très proche de zéro en un point : $B(x_B,y_B)$ tel que : $x_B = x_A + h$ et $y_B = f(x_A + h)$

On calcule la pente de la droite « AB » :
$$\frac{\Delta y}{\Delta x} = \frac{f(x_A + h) - f(x_A)}{(x_A + h) - x_A} = \frac{f(x_A + h) - f(x_A)}{h}$$

Si on fait tendre « h » vers zéro, « B » va se rapprocher jusqu'à être confondu avec « A » et la droite « AB » deviendra la tangente au point « A »

La dérivée de f(x) sera la limite de : $\frac{\Delta y}{\Delta x}$ quand $h \to 0$ donc quand $\Delta x \to 0$

Le coefficient directeur de la tangente (la pente) « α » sera égal à la dérivée : $\alpha = f'(x_A)$

Prenons par exemple une courbe d'équation : $f(x) = k.x^n$

$$\begin{split} \frac{\Delta y}{\Delta x} &= \frac{f(x+h) - f(x)}{h} \\ f(x) &= k.x^n \quad donc \quad f(x+h) = k.(x+h)^n \\ f(x+h) &= k.(x+h)^n = k(x^n + n.x^{n-1}h + \left(\sum_{1}^{n-1}m\right).x^{n-2}h^2 + + h^n) \\ \Delta y &= f(x+h) - f(x) = k.\left[(x^n + n.x^{n-1}h + \left(\sum_{1}^{n-1}m\right).x^{n-2}h^2 + + h^n) \right] - k.x^n \\ \Delta y &= k(x^n + n.x^{n-1}h + \left(\sum_{1}^{n-1}m\right).x^{n-2}h^2 + + h^n) - k.x^n \quad les \ termes \quad kx^n - k.x^n \quad s' \ annulent \\ \Delta y &= k(n.x^{n-1}h + \left(\sum_{1}^{n-1}m\right).x^{n-2}h^2 + + h^n) = k.h.(n.x^{n-1} + \left(\sum_{1}^{n-1}m\right).x^{n-2}h + + h^{n-1}) \end{split}$$

$$\frac{\Delta y}{\Delta x} = \frac{f(x+h) - f(x)}{h} = \frac{k \cdot h \cdot (n \cdot x^{n-1} + \left(\sum_{1}^{n-1} m\right) \cdot x^{n-2} h + \dots + h^{n-1})}{h} \quad On \text{ simplifie par } h \quad (h \neq 0)$$

Donc:
$$\frac{\Delta y}{\Delta x} = k.(n.x^{n-1} + \left(\sum_{1}^{n-1} m\right).x^{n-2}h + + h^{n-1})$$

On va calculer la limite de $\frac{\Delta y}{\Delta x}$ quand $h \to 0$

 $h \to 0$ donc très petit devant x donc on néglige les termes : $\left(\sum_{1}^{n-1} m\right) x^{n-2} h + \dots + h^{n-1}$

$$\frac{\Delta y}{\Delta x} \to k.n.x^{n-1} \qquad \text{quand} \quad \Delta x \to 0 \qquad (car \, \Delta x = h)$$

On a donc démontré que si $f(x) = k.x^n$ sa dérivée $f'(x) = k.n.x^{n-1}$

Calcul de la tangente :

Maintenant on va calculer l'équation de la tangente au point $A(x_A, y_A)$ à la courbe f(x)L'équation de la droite est $y = \alpha x + \beta$

La droite passe par le point $A(x_A, y_A)$ donc : x_A et y_A vérifient son équation :

 $y_A = \alpha \cdot x_A + \beta$ Le point A(x_A,y_A) étant sur la courbe définie par f(x), on a $y_A = f(x_A)$

Donc: $f(x_A) = \alpha . x_A + \beta$

On connaît le coefficient directeur (la pente) de la tangente an « A » :

$$\alpha = f'(x_A)$$

Donc:
$$f(x_A) = f'(x_A) \cdot x_A + \beta$$

$$\beta = f(x_A) - f'(x_A) \cdot x_A$$

Donc l'équation de la droite $y = \alpha x + \beta$ devient : $y = f'(x_A) \cdot x + f(x_A) \cdot f'(x_A) \cdot x_A$

Donc au point : $A(x_A, f(x_A))$ la tangente à f(x) aura pour équation :

$$y = f'(x_A)(x - x_A) + f(x_A)$$